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Abstract

We propose a Deep Reinforcement Learning (Deep RL) al-
gorithm for solving the online 3D bin packing problem for
an arbitrary number of bins and any bin size. The focus is on
producing decisions that can be physically implemented by a
robotic loading arm, a laboratory prototype used for testing
the concept. The problem considered in this paper is novel in
two ways. First, unlike the traditional 3D bin packing prob-
lem, we assume that the entire set of objects to be packed is
not known a priori. Instead, a fixed number of upcoming ob-
jects is visible to the loading system, and they must be loaded
in the order of arrival. Second, the goal is not to move ob-
jects from one point to another via a feasible path, but to
find a location and orientation for each object that maximises
the overall packing efficiency of the bin(s). Finally, the learnt
model is designed to work with problem instances of arbitrary
size without retraining. Simulation results show that the RL-
based method outperforms state-of-the-art online bin packing
heuristics in terms of empirical competitive ratio and volume
efficiency.

Introduction
The geometric three-dimensional bin-packing problem is a
known NP-hard problem in computer science literature, and
is a variant of the knapsack problem (Kolhe and Christensen
2010). The goal is to define a packing strategy for boxes of
different shape and size such that the space inside the bin is
maximally utilized (volume efficiency version of the objec-
tive). Alternatively, one can define the goal in terms of the
least number of bins for packing a given set of objects (com-
petitiveness ratio version of the objective). In this paper,
we describe an instantiation of the 3D bin-packing problem
with the example of parcel loading using a robotic arm. The
parcels (boxes) arrive on a conveyor belt, and only a subset
of the entire batch is visible at any one time. This version
of the problem is thus online or real-time 3D bin-packing,
which we abbreviate to RT-3D-BPP. Since the concept is
developed on a laboratory setup including the robotic arm
and a conveyor, we include realistic constraints on the load-
ing plan, including bottom-up ordered placement of boxes
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in the container, smoothness of the surface underneath each
box, and degrees of freedom of the arm.

A number of methods have been reported in literature
for solving the standard (offline) 3D-BPP problem, where
the complete set of objects to be packed is known a pri-
ori. This includes integer linear programming (Boef et al.
2003), space minimizing heuristics (Crainic, Perboli, and
Tadei 2008), genetic algorithms (Gonçalves and Resende
2013), and machine learning based smart heuristic selection
(Ross et al. 2002). Compared to the offline version, RT-3D-
BPP is more challenging as the packing strategy is decided
for each arriving object with limited knowledge of the future
sequence of objects. Hence, one can only hope to locally
optimize the policy, which is itself complicated by the dy-
namically changing fitness landscape (Weise et al. 2009) and
the limited computation time. Most existing online meth-
ods focus on finding the theoretical bounds for approximate
or heuristic methods for online bin packing (Epstein 2009),
(Han et al. 2011), (Christensen et al. 2017), (Epstein and
Van Stee 2007). Heuristic methods require a large amount
of design effort and have restricted generalization capabili-
ties. By contrast, Deep Reinforcement learning (Deep RL)
has shown promise in solving several combinatorial prob-
lems (Sutskever, Vinyals, and Le 2014), (Bello et al. 2016).
Furthermore, it has also been used for long horizon planning
problems such as in the case of Alpha Go (Silver et al. 2017).

While Deep RL has recently been applied to the bin-
packing problem as well (Jin 2017), (Hu et al. 2017a), prior
literature focuses on the offline version of the problem. In
this paper, we propose a novel Deep RL method for solving
the RT-3D-BPP. The proposed method uses a DQN frame-
work to learn suitable packing strategies while taking prac-
tical robotic constraints into account. We compare the per-
formance of the RL methodology against state-of-the-art
heuristics. The metric used for comparison is the empirically
computed competitive ratio, a measure of the number of bins
required by an algorithm to pack a set of objects, normal-
ized by the optimal number of bins. While the RL algorithm
is trained using a simulator, the practicability of the trained
policy is tested through a laboratory experiment with physi-
cal robots, and on problem instances with different scale and
underlying distribution of object dimensions.



The claimed contributions of this paper are, (1) a novel
heuristic (called WallE) for solving RT-3D-BPP which is
shown to outperform existing bin-packing heuristics, (2) a
Deep RL methodology (called PackMan) for online compu-
tation of object location and orientation, combined with (3) a
generalised approach that allows the algorithm to work with
arbitrary bin sizes, making it more suitable for real world de-
ployment. The rest of this paper is organized as follows. An
overview of related work is provided in the next section, fol-
lowed by a formal problem definition, proposed methods for
solving RT-3D-BPP, and details of various simulation and
real world experiments and their outcomes.

Related Work
We briefly review literature dealing with the real-time and
offline 3D bin-packing problems (which also gives us the
performance metric used here), followed by reinforcement
learning solutions to combinatorial problems in general, and
finally learning-based methodologies for bin-packing.

Solutions to bin-packing problems: The online version
of the 3D bin-packing problem (RT-3D-BPP) is commonly
found in the warehouse parcel loading context, and has been
formulated as a knapsack problem (Kolhe and Christensen
2010). The survey (Kolhe and Christensen 2010) is limited
to the description of the problem and benchmarks that are
used to compare different algorithms. A more detailed study
of n-dimensional BPP (Christensen et al. 2016) describes
state-of-the-art algorithms and their ‘competitive ratio’.

Definition: An online algorithm A is called c-competitive
if there exist constants c and δ such that for all finite in-
put sequences I , the number of bins required by A is upper-
bounded by c · Opt(I) + δ, where Opt(I) is the optimal
number of bins for this input sequence.

Online algorithms with c = 1.58 are known for rectangle
and cube packing with and without rotation (Balogh et al.
2017). An alternative metric for bin-packing is the percent-
age of the filled space inside the container. While we report
these numbers for our algorithms in this paper, we did not
find an existing comparison of algorithms based on this met-
ric. Also, to the best of our knowledge, there are no standard
data sets on which performance of different algorithms can
be tested empirically.

RT-3D-BPP becomes challenging when the problem is
posed as placement through an articulated robotic arm.
Robotic arms may have limits on reachability inside the con-
tainer and limited manoeuvrability. They cannot reshuffle
the objects which are placed inside the container and cannot
undertake very tight placements in context of sensor noise
and minor caliberation errors. 3D-BPP for robotic arm is
discussed in (Martello et al. 2007; Boef et al. 2003), but
there is no discussion of the online variant. A more recent
and advanced study for irregular objects has been done in
(Wang, Hauser, and Dec 2018). Study of column formation
technique for robot arm packaging is discussed in (Mah-
vash, Awasthi, and Chauhan 2017). A system for packing
homogenous sized boxes using robotic arm is discussed in
(Justesen, Duncan, and Murphy 2018).

Reinforcement learning for combinatorial optimiza-
tion: Recent literature has demonstrated the potential of

reinforcement learning (RL) for solving combinatorial op-
timization problems, with applications to gameplay (Sil-
ver et al. 2017), operations research problems such as trav-
elling salesperson (TSP) (Gambardella and Dorigo 1995;
Bello et al. 2016), vehicle routing (VRP) (Nazari et al. 2018)
and job-shop scheduling (JSSP) (Zhang and Dietterich 1995;
Wei and Zhao 2005), and logistics problems such as con-
tainer loading for ships (Verma et al. 2019). Apart from
gameplay situatons, most combinatorial optimization prob-
lems can be formulated as one-shot scheduling problems.
However, for comptability with RL algorithms, they are re-
formulated as sequential decision-making problems. We fol-
low a similar conceptual approach, by treating each parcel
loading step as a decision. However, there are three key dif-
ferences between the current problem and ones considered
earlier. First, unlike in gameplay situations, the number of
potential actions for our problem (location and orientation
of boxes) is very large. Second, unlike TSP and VRP, the
change in state of the system after loading a box or parcel
is complex, because it changes the surface shape of the con-
tainer in 3D. Finally, the ‘goodness’ of a chosen location can
change substantially with very small changes in the action.
For example, placing a box flush with the container wall is
significantly better than leaving a small gap with the wall.
As a result, RL algorithms with continuous action spaces
such as DDPG (Lillicrap et al. 2015) are difficult to use. A
more detailed discussion of algorithm selection is provided
in subsequent sections.

Supervised and reinforcement learning for bin-
packing: A few studies have used heuristics augmented by
supervised learning for bin-packing. In (Ross et al. 2002),
the authors have used a classifier system called XCS to se-
lect a heuristic from a given set, based on the percentage
of boxes left to packed, to solve a 1D-BPP. Similarly, (Mao
et al. 2017) has used neural networks to select the heuristic
based on feature information collected from the items and
the bins. A few reinforcement learning based approaches
have also been reported. In (Laterre et al. 2018), authors ap-
ply their Reward Ranked (R2) algorithm to 2D and 3D BPP.
This R2 algorithm computes ranked rewards by comparing
the terminal reward of the agent against its previous per-
formance, which is then used to update the neural network.
In (Runarsson 2011), the author proposes an RL algorithm
which tries to learn heuristic policies using BPP as an ex-
ample. Deep RL has been used in designing a bin with least
surface area that could pack all the items (Hu et al. 2017b),
which uses policy-based RL (Reinforce) with a 2-step Neu-
ral Network (Ptr-Net) consisting of RNNs and has shown to
achieve≈ 5% improvement over heuristics. The authors im-
prove the algorithm in (Hu et al. 2018) by multi-tasking the
sequence generation (Sutskever, Vinyals, and Le 2014).

Our survey did not reveal learning-based approaches that
could solve the online 3D bin-packing problem, with high
solution quality and limited computational time, and with
real-world physical constraints on the loading system. In
the next section, we describe the RT-3D-BPP context in de-
tail, and proceed to develop an RL approach to solve this
problem. The generalization capability of this algorithm is
demonstrated in the Results section.



Problem Description
The overarching goal of this work is to develop a planning
algorithm for a robotic parcel loading system in a sorting
center. A mock-up of this system has been created in the
laboratory, as shown in Fig. 1. The setup is meant to test the
robot-implementability of any developed packing policies,
including constraints that are specific to the system being
used (described in detail later). The equipment consists of
a conveyor belt on which cuboidal parcels of arbitrary di-
mensions appear as a stream. We assume that the incoming
parcels are ordered and equally spatially separated on the
belt. Each parcel is picked by the robot arm and placed inside
the container (Fig. 1). The placement location is selected by
the algorithm which is discussed in this paper.

Robot-implementability: The loading of parcels is subject
to some physical constraints. First, the gripper of the robot
requires all boxes to be non-deformable cuboids. Second,
the robot is capable of rotating the boxes only along the z-
axis (vertical axis), in steps of 90o. This is more restrictive
than the generic RT-3D-BPP with six canonical orientations
and partial rotations. Third, the robot placement has an ac-
curacy of 1 centimetre, with any partial dimensions rounded
up to the next highest centimetre. Fourth, the placement of
sensors dictates that only the upcoming n boxes (where n is
a parameter) are known to the RL agent, in terms of phys-
ical dimensions. Finally, parcels cannot be reshuffled once
placed inside the container, cannot be placed below an ex-
isting parcel, the corners of the parcel must be level, and the
base must be flat (Fig. 2).

In parallel to the real environment, a physics-enabled sim-
ulation environment is also created which is used to under-
stand and visualize the different packing strategies. This en-
vironment is used for training the RL algorithm, since the
physical setup is too slow to be used for training. The goal
of the algorithm is to pack a finite stream of incoming boxes
(cuboidal, non-deformable, with arbitrary dimensions) into
a set of containers. There is no limit on the number of con-
tainers that can be used; however, the objective is to min-
imise the number of non-empty containers after the entire
stream of boxes has been packed. In this paper, we work
with synthetic data sets that can be publicly shared. There-
fore, the optimal number of containers (bins) is known, and
the competitiveness ratio c as per Definition 1 can be em-
pirically computed. We also track the volume fraction of the
first Opt(I) bins as a secondary objective for all competing
algorithms, where Opt(I) is the optimal number of contain-
ers as defined in the introductory description.

Algorithms
We describe the algorithms used for solving the RT-3D-
BPP in this paper, including the baseline algorithms from
prior literature, a new heuristic developed for this work, and
the RL-based approach. All the algorithms described here,
model the containers as 2D arrays, representing their state
when looking from a top-down perspective. The containers
are discretized into a rectangular grid of uniform size (typ-
ically 1×1 cm). The tuple (i, j) represents the physical lo-
cation in the container, while the value hi,j of the grid cell

(i, j) represents the height to which boxes have been filled
at that location. Each container has dimensions L, B, and
H along the i, j, and h directions respectively, as shown in
Fig. 3. Placement of a box changes the state of the container
as shown, and must not exceed the dimensions (L,B,H) of
the container. If there is more than one container open si-
multaneously, boxes must be fully contained within a single
container.

Baseline heuristics from literature
We select three standard algorithms that occur in prior lit-
erature in various forms (Martello et al. 2007), (Boef et al.
2003), (Mahvash, Awasthi, and Chauhan 2017), (Justesen,
Duncan, and Murphy 2018).

First Fit places boxes in the first found feasible location
(defined by the robot-implementability constraints), scan-
ning row-by-row from the top left of the container from the
perspective of Fig. 3. If no feasible locations are found in
the currently available containers, the orientation of the box
is changed and the search is executed again. If this check
also fails, a new container is opened and the box is placed
there. First Fit is the fastest and simplest of the search-based
algorithms as it does not have to explore the whole space to
find the placement position.

Floor building attempts to pack the container layer-by-
layer, from the floor up. In effect, the heuristic places boxes
at the lowest (in terms of coordinate h) feasible location in
the container. Rules for changing the orientation and open-
ing new containers remain the same as for First Fit. Floor
building performs very well when boxes in the incoming
stream are of similar height, because the newly created sur-
face is as smooth as the base. When the parcels are of vary-
ing heights, the solution quality deteriorates because it cre-
ates rough surfaces. The algorithm also requires searching
through all possible locations and orientations before plac-
ing each parcel, leading to slow decision-making.

Column building is the vertical complement of floor build-
ing, where the algorithm attempts to build towers of boxes
with the highest feasible h coordinate in the container. Col-
umn building performs very well when the incoming boxes
are sorted in decreasing order of their volume. Broadly, col-
umn building performs empirically as well as first fit but the
overall structure which is created after packing can be un-
stable, especially for a robot to build.

Freshly crafted heuristic: WallE
The key takeaway from the baseline heuristics is that each
has its own merits and demerits in specific situations. We
also observed expert human packers performing the same
job, and learned that they too use a mix of these strategies.
Therefore, we attempted to define a heuristic which mim-
ics the desirable characteristics of multiple standard meth-
ods. The algorithm is called WallE because it uses incom-
ing boxes to build walls that are of nearly the same height
as the neighbouring walls on all four sides. WallE takes the
box dimension as input and maintains the state space rep-
resentation for each container. When a new box arrives, it
computes a stability score S for each feasible location using
the following relationship.



Figure 1: Prototype created in the lab. The conveyor belt brings single-sorted parcels with regular spacing. Demonstration of one
pick and place cycle is shown, from left to right (a) Picking the parcel from the conveyor belt (b) Searching for the placement
location (c) Placing the parcel inside the container.

(a) Rotation: single axis (b) Placement: bottom-up (c) Flat base (d) Round-off error

Figure 2: Restrictions due to robot packability constraints and discrete state space representation.

Let us assume that the length and width of the next in-
coming box is l and b respectively. If this box is placed at
location (i, j), it will occupy a total of l · b grid cells from
(i : i+l−1, j : j+b−1). We first check whether this place-
ment is feasible, according to the rules outlined in problem
description. Next, we compute the net variation Gvar, which
is defined as the sum of absolute values of differences in cell
heights with neighbouring cells around the box, after the box
is placed in the proposed location. Note that Gvar is com-
posed of l · b terms, each corresponding to one bordering
cell of the box. If one or more edges of the box are flush
with the wall, those quantities are filled by zeroes. Second,
we count the number of bordering cells that are higher than
the height of the proposed location after loading. Denoted by
Ghigh, this count indicates how snugly the current location
packs an existing hole in the container. Finally, we count the
number Gflush of bordering cells that would be exactly level
with the top surface of the box, if placed in the proposed lo-
cation. This indicates how smooth the resulting surface will
be.

The stability score definition is given by (1), where hi,j is
the height of the location (i, j) if the box was loaded there.
The constants αi are user-defined non-negative parameters
(we use α1 = 0.75, α2 = 1, α3 = 1, α4 = 0.01, α5 = 1 af-
ter experimentation; the idea is to ensure all terms are of the
same order of magnitude). This score is computed for all lo-
cations in the container for both orientations of the box, and
the location-orientation combination with the highest score
is chosen for placement.

S = −α1Gvar +α2Ghigh +α3Gflush−α4 (i+j)−α5 hi,j
(1)

The structure of (1) includes characteristics of floor building
(penalty on height hi,j), first fit (penalty on location i+j), as
well as an emphasis on smooth surfaces (first three terms),
which infuses some wall building tendencies if the result-
ing placement is tall but smooth on top. While WallE has
reasonably good performance as discussed subsequently in
results, the definition of S is somewhat arbitrary, and invari-
ant with the characteristics of boxes seen in each data set.
It is also dependent on the values of αi. On the other hand,
RL has the potential to learn more flexible policies based on
training, rather than on hand-tuned parameters. This aspect
is explored in the rest of the paper, while WallE provides
stronger competition to the RL algorithm than the baseline
heuristics.

Deep Reinforcement Learning - PackMan
The RT-3D-BPP task can be modelled as a Markov Decision
Process (S,A, T ,R, γ), where S is the set of possible cur-
rent states, A denotes the decision or action space, T repre-
sents transition probabilities from one combination of state
and action to the next, R denotes the rewards, and γ is the
discount factor for future rewards. The Markovian assump-
tion is valid since the current state of the container(s) en-
capsulates information from all previous loading steps. The
environment tracks the state of the containers and the se-
quence of incoming boxes on the conveyor. Each step is de-
fined by the placement of an incoming box, and an episode
terminates when the last box in the sequence is placed. The
definitions of states, actions, and rewards are described in
detail later in this section.

Selection of methodology: The obvious approach using



reinforcement learning for this problem is to train a policy-
based method that computes the optimal location and orien-
tation for the next box, given the current state of the con-
tainer and (optionally) information about other upcoming
boxes. However, we consider this option to be infeasible
for the problem at hand. First, the number of possible ac-
tions in each step is the product of the number of grid cells
and the number of orientations, which can easily exceed ten
thousand (see results section). Second, each action is based
on the current state of the containers and the dimensions of
the next box in the sequence. Understanding the geomet-
ric implications of these two inputs in order to predict fu-
ture rewards is a very complex task. We experimented ex-
tensively with policy-based approaches for this task, using
methods such as DDPG (Lillicrap et al. 2015), but with-
out success. The key obstacle to effective learning was the
fact that the optimality of a chosen location and orientation
varies sharply (almost discontinuously) with small changes
in the inputs. For example, placing a box flush with the wall
would lead to good packing, but placing it just 1 cm away
from the wall could result in the narrow gap becoming un-
usable. As a result, we divide the decision-making into two
steps: (i) selection of feasible location/orientation combina-
tions using basic rules, and (ii) a value-based RL algorithm
for choosing one of the suggested options. We denote the
combined procedure by the name PackMan, for brevity.

Conceptual approach: The first step in PackMan is to
identify a set of eligible locations and orientations. Given
the very large number of grid positions may be placed and
the infeasibility of computing the value function for thou-
sands of such options, we narrow the list of eligible loca-
tions/orientations using the following logic, with an accom-
panying schematic shown in Figure 4. We note that it is
highly unlikely that the optimal location for an upcoming
box will be in the middle of a flat surface, or partway along
a wall. It is much more likely to coincide with a corner of
the container, or with the edges of previously packed boxes
within the container. Therefore, given the current container
state with a certain number preloaded boxes (shaded portion
in Figure 4), the location selection procedure only suggests
options that coincide with corner locations (for example, the
12 options marked in Figure 4). These could be on the floor
of the container or on top of other boxes. The same proce-
dure is repeated for both possible orientations of the upcom-
ing box, and the concatenated shortlist is given to the RL
agent for choosing the best option.

Figure 3: The figure shows an empty container of 5× 3× 5
on the left. A box of size 3×2×5 as shown in the center is to
be placed inside the container. The rightmost image shows
the updated space after placing the box in the top-left corner.

In the second step, a Deep Q Network (Mnih et al. 2015)
is used to select one location/orientation combination from
the set provided to it. The options are presented in the form
of potential future states of the container, were the box to
be loaded in the relevant location and orientation. The box
is loaded according to the chosen option, the container state
is updated, and the environment proceeds to the next box.
Skipping the box is not allowed. Instead, if there is no fea-
sible location available for the current box, a new container
is opened. The advantages of this approach are, (i) the good-
ness of each option is learnt using the DQN approach, rather
than a hand-tuned score as in WallE, and (ii) the agent does
not need to learn the correlation between current box dimen-
sions and the state of the container, but instead only chooses
the best out of the set of potential future states, as explained
in subsequent text.

State definition: The state representation for PackMan
builds upon the one depicted in Figure 3, where we look at
a top-down view of T containers (placed next to each other)
and the value of each cell (i, j) is the total height of stacked
boxes in that cell. The number T of containers included in
the representation is large enough to fit all possible box se-
quences, even with poor volume efficiency. The current state
of the containers is thus a 2D array with a total of T · L · B
grid cells, with the number of cells along each axis depen-
dent on the arrangement of containers. In most of the ex-
periments in this paper, we use T = 16 containers each of
dimension 45 × 80 placed in a row, resulting in a container
state dimension of 45× 1280.

In order to keep the RL agent independent of the size of
the input, we encode the container state into a fixed-size rep-
resentation x̄. This representation could be learnt by an au-
toencoder, or one can directly use pooling functions. In this
work, we use three different pooling functions to reduce any
input size to vectors of size 144 each: (i) average pooling,
(ii) max pooling, and (iii) the difference between max pool-
ing and min pooling. The vector x̄ (of size 3×144 = 432) is
expected to indicate to the RL agent the average height of the
underlying receptive fields, as well as its smoothness. The
step size of pooling ensures disjoint receptive fields for each
element of the vector. In addition, we define two more in-

Container

boundary

Currently

loaded boxes

Potential new

locations

LEGEND1 2

3 5 7

864

9 10 11 12

Figure 4: Schematic of selective search algorithm. Given
a current layout of boxes in the container (shaded in the
figure), the algorithm only suggests locations (marked 1
through 12) where a corner of the current box coincides with
a corner of the container, or with a corner of the currently
loaded box structure.
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Figure 5: Network architecture for the DQN agent. Input im-
ages of any shape (in the present instance, 45 × 1280) are
preprocessed to form three constant-sized vectors x̄, ȳ, and
z̄ as shown. This is followed by a set of dense layers and
channel concatenation to produce a scalar prediction of q-
value.

put channels. A vector ȳ encodes the height of the bordering
cells of the proposed placement location of the box, in order
to indicate how well it fits with the surrounding cells. We
use a size of 144 units for this representation, with borders
smaller than 144 units (depending on perimeter of the box)
padded by trailing zeroes, and borders larger than 144 units
populated using constant-skip sampling. Finally, a vector z̄
is a one-hot encoding of the receptive field that the currently
proposed location belongs to. Together, (x̄, ȳ, z̄) define the
DQN input.

Architecture: The network architecture used for the
DQN agent is shown in Figure 5. The current state of the
container (denoted by LDC input, where LDC is short for
Long Distance Container) is encoded and flattened by the
first input x̄ of 432 units, which is followed by a dense layer
of 144 units. It is then concatenated with the border informa-
tion ȳ and one-hot encoding z̄ of the proposed location be-
fore passing through the second layer of size 144., followed
by a third layer with 24 hidden units, a fourth layer with 4
units, and scalar output neuron representing the q-value. The
network is implemented using keras in Python 3.6. We use
tanh activations and train using stochastic gradient descent,
a learning rate of 0.001, and momentum of 0.5.

Rewards and training: There is no obvious step reward
in this problem, since quantitative terms such as volume
filled so far are out of our control (order of boxes cannot
be changed). Reward shaping using the score from WallE is
a possibility, but this would be accompanied by the difficulty
of tuning the parameters αi, which we wish to avoid. There-
fore, we choose not to give a traditional step reward, and
instead provide a discounted version of the terminal reward

as a proxy for the step reward. The terminal reward itself is
defined by,

ζ =
Vpacked

Tused · L ·B ·H
− τ, (2)

where the first term is the packing fraction for the whole se-
quence (assuming that the number of occupied containers at
the end of the episode is Tused), and τ is the average pack-
ing fraction over all episodes since the start of training. The
terminal reward encourages continuous improvement during
the training process, an idea analysed in prior work1. If there
are N boxes in a given episode, then the step reward at time
step t is given by,

rt = ρN−tζ,

where ρ = 0.99 is a discount factor for the terminal re-
ward. The entire episode is inserted into the replay buffer
after completion and computation of the rewards for each
step. The logic for using this reward definition (inspired by
on-policy algorithms) is (i) to provide a reward based on the
results of the entire sequence of decisions, and (ii) to speed
up training by avoiding the sparse nature of pure terminal
reward approaches.

Training is carried out with a mean-squared error loss
with respect to the following relation with γ = 0.75,

Q(st, at) = (1− γ)rt + γQ(st+1, at+1),

where the left-hand side is network output and the right-hand
side is the target value, produced by a target network (cloned
from the online network after every 10 training runs). Train-
ing is carried out after every episode with a batch size of
256 (the approximate number of boxes per episode in the
training data).

Results
We train PackMan using synthetically generated data sets,
containing boxes of randomly generated dimensions. How-
ever, we ensure that the dimensions match up such that each
container can be filled completely (100% fill fraction). Each
data set consists of 10 containers worth of boxes (Opt(I) =
10), with the number of boxes ranging between 230 and 370
per episode. The order of upcoming boxes is not known to
the algorithms, apart from n = 2 boxes after the current one.
The episode terminates when all boxes are packed, or if the
algorithm is unable to pack all boxes in a maximum of 16
containers. The terminal reward (2) is computed based on
the number of containers required in each episode.

Training: Fig. 6 shows the improvement in packing ef-
ficiency over 2000 episodes of training using ε-greedy ex-
ploration, with ε decreasing linearly from 1 to 0 in 1000
episodes. The algorithm trains for the last 1000 episodes
without exploration, because we found that random deci-
sions early in an episode greatly affect the terminal reward,
significantly slowing down training. The initial packing effi-
ciency of approximately 65% improves steadily to 82% over
1100 episodes, and stays stable afterwards. The number of
bins used decreases from just above 16 (we tag episodes that
do not terminate in 16 bins with a bin count of 17) to just un-
der 13.

1self-citation redacted for anonymity



Algorithm Comp.
ratio c

Time
per box
(sec)

Avg.
pack

Best
Pack

AH 1.58 - - -
Floor building 1.52 0.0002 81.0% 05%
Column build 1.46 0.0001 81.0% 06%
First Fit 1.47 0.0002 81.3% 07%
WallE 1.41 0.0106 81.8% 25%
PackMan 1.29 0.0342 82.8% 57%

Table 1: Comparison of results on 100 episodes of test data.
AH (Balogh et al. 2017) has a theoretical competitive ratio of
1.58, and was not tested empirically. Other algorithms have
empirical results. While PackMan requires the largest time
per inference, it also has the lowest competitive ratio, highest
average packing fraction, and largest proportion of episodes
where it had the best packing fraction.

Comparison with baselines: Table 1 compares the algo-
rithms on the competitiveness ratio metric (c), the time taken
per loading decision, average packing efficiency, and the
fraction of test instances in which a given algorithm returned
the best packing efficiency. Advanced Harmonic (AH) is
known to have a theoretical upper bound of c = 1.58, al-
though this is with unconstrained rotation. Empirical results
for robot-stackable algorithms show that PackMan has the
best empirical ratio of 1.29, averaging Tused = 12.9 bins
compared to Opt(I) = 10. It also has the highest average
packing fraction. While the difference in packing fractions
is small, further investigation revealed that this was because
there was significant variation among the instances, with
some box streams favouring one algorithm over the others.
The fact that PackMan returns the best efficiency in 57% of
test cases implies that it retains a significant advantage over
other algorithms across a variety of instances.

The box whiskers plot shown in Figure 7 illustrates the
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Figure 6: Fill percentages of first 10 bins, and total bins used,
during the course of RL training.
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Figure 7: Comparison of empirical fill rates for all 5 algo-
rithms, over 100 test data sets.

differences between the algorithms. While floor building and
column building have nearly identical results for the test
data sets, WallE returns the best results among the heuris-
tics. This is a result of its balanced approach to box place-
ment, without a singular emphasis on floor or column build-
ing. The median packing efficiency for PackMan is clearly
higher than all the heuristics, but it has a larger spread in the
outliers. However, none of the PackMan test runs resulted in
a competitive ratio c higher than 1.4 (or 14 bins).

Transfer learning capability: As mentioned earlier in
the paper, the goal of the present approach is to train an RL
that works without retraining on other problem instances,
whether generated using a different distribution of box di-
mensions, or a different scale of inputs. Figure 8 plots the
packing efficiency in two additional types of instances. The
left-most box plot is a repeat of the PackMan results from
Figure 7. The box plot in the middle is PackMan’s efficiency
when boxes have smaller dimensions on average. The under-
lying random distribution is over smaller dimensions. Even
though the total volume is still equivalent to 10 bins, there
are roughly double the number of boxes per episode. Since
smaller dimensions result in rougher surfaces, the average
packing efficiency is lower, but the degradation is small. The
right-most box plot in Figure 8 plots the results on a data set
with Opt(I) = 3 bins. We allow a maximum of 6 bins in
this case, with a raw input size of 45× (80× 6) pixels. It is
still mapped to the same vector inputs (x̄, ȳ, z̄), and the same
model learnt for 16 bins is used without retraining. While the
packing efficiency is even lower, this is likely to be a charac-
teristic of these data sets. Figure 9 shows that the efficiency
when the model is trained on 3-bin data sets is nearly the
same as that of the model transferred from the 10-bin data
set.

Insights from real-world experiments: The final ver-
sion of PackMan was deployed on a real robotic system to
understand the challenges. The most critical challenge in de-
ployment was updating the algorithm’s belief state accord-
ing to the containers’ actual configuration, which are sub-
ject to sensor and actuator noise. Because of this, the parcels
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Figure 8: Comparison of empirical fill rates for three differ-
ent problem instances, over 100 test data sets each.
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Figure 9: Comparison of empirical fill rates for the 3-bin
data set, with training on 3-bin data and with weights trans-
ferred directly from 10-bin data.

may not get placed at the exact location dictated by the algo-
rithm. We observed that parcels collide inside the container
during placement due to these errors. To avoid collision we
increased the grid size in the belief state of the algorithm and
left a space of around 1-2 cm between boxes. Eliminating
this space is possible only when the belief state of the al-
gorithm is updated using millimeter-level accurate real-time
measurements. Another challenge was estimation of box ori-
entation and dimension while picking. Any error at this point
is carried forward and causes difference in actual and belief
state.

Conclusion and Future Work
This paper presented PackMan, a two-step approach to
tackle the online 3D Bin Packing Problem using a search
heuristic followed by reinforcement learning. We tested our
approach on multiple randomly generated datasets. The ex-
periments demonstrated that PackMan does better than the
state-of-the-art online bin packing heuristics and generates
robot packable solutions which are essential for real world
deployment. We also showed that PackMan can be used on

different box distributions and scales of input without re-
training. While PackMan can be used in real-time with an
inference time under 40 ms, we foresee potential for fur-
ther improvements. We would like to improve the RL strat-
egy by reworking the input layers of the network to trans-
mit more information about the container layout. There is
also the possibility of looking at direct policy-based outputs
through more advanced architectures. The hardware capa-
bilities of the robotic loading system are being improved in
parallel with the algorithmic improvement efforts.
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